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ABSTRACT 
• 

The effects of the transverse component of velocity 

fluctuations on nominal stagnation point (NSP) pressure 

fluctuations are analyzed for a finite-thickness symmetric 

body penetrating into a turbulent flow. The analysis is 

idealized to the case of a two-dimensional symmetric airfoil- 

like profile. Considerations are limited to fluctuation 

scales which are large relative to airfoil thickness but not 

necessarily large relative to airfoil chord. A single wave- 

number component of the turbulence is analyzed, permitting 

synthesis for any desired wave-number spectrum, within the 

above-mentioned limitation on minimum scale size or maximum 

wave number. 

The results are given in analytical form for transverse- 

velDcity-fluctuation induced pressure fluctuation at the NSP. 

These results are then compared to a measure of axial-velocity 

induced fluctuations. The important parameters in this com- 

nar-ie™ a,-ö cK«,,« 4.« K« fluctuation scale   . fluctuation velocity panson are shown to be  .^„^ „^^i, „  and  r—r--— i i-r*-. nose radius   """ penetration velocity' 

When the product of these ratios isl^ 120 the transverse-velocity 
I is dominated by   \  '       \ 
is of the same effectiveness as  the axial- 
dominates / 

velocity fluctuation u' in inducing pressure fluctuations p* 

at the NSP.  For the case where the axial component dominates, 

existing references give the relation between u* and p' adequately. 

For the c?se where the transverse component v' dominates, the 

present report gives the relation between v' and p". The 

intermediate regime requires a combination of the two contributions 

ii 
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i. INTRODUCTION 

This report deals with certain aspects of the general 
problem of relating the pressure fluctuations sensed at the 
nose of a symmetric body to the velocity fluctuations present 
in the fluid medium through which the body is penetrating. 
Considerations are limited to low-speed or incompressible 
flows. The experimental work of Bearman,1 together with the 
analytical background cited therein, forms a basis for relat- 
ing the two aforementioned fluctuation quantities when the 
scales of the encountered fluctuations are much smaller than 
the body length in the streamwise direction. 

Here, however, we are interested specifically in situa- 
tions for which the encountered fluctuation spectrum (in wav3- 
number space) has significant energy in the wave-number regime 
corresponding to the chord-length of the penetrating body. 
In the small-scale regime considered by Bearman, the pressure 
fluctuations could be related roughly to the axial component 
(or streamwise component) of velocity fluctuations.  It is 
not clear that this is still true when the encountered fluctua- 
tion scales becore as large as the chord length of the 
penetrating body, since the transverse velocity fluctuations 
then start to affect the nose-region flow via the nonsteady 
circulation induced about the body. 

Thus the objective of the present report is to estimate 
the significance of the transverse component of encountered 
velocity fluctuations upon pressure fluctuations sensed at 
the nominal stagnation point (NSP) of a symmetric airfoil-like 
profile traversing a turbulent fluid medium.  More specifically, 
the intent is to determine when, if ever, the transverse 
fluctuation component, through the mechanism of inducing 
stagnation-point meandering, can become as important as the 
axial fluctuation component in affecting the fluctuation 
pressure sensed at the NSP. 

In view of the complexity of a completely detailed 
analysis, the approach to be taken is as follows:  A symmetric 
two-dimensional wing moving at velocity U0 at zero nominal 
incidence, is presumed to penetrate a sinusoidal gust of 
transverse velocity v(x-U0t) in wing-fixed coordinates. That 
is, the velocity fluctuation is assumed to be essentially sta- 
tionary in fluid coordinates or to be convected in at free- 
stream velocity U0 in wing-fixed coordinates. This is the 
classical 2-D sinusoidal gust-entry problem.  The convection 
assumption is equivalent to ignoring any mean flow in the 
imbient fluctuating field. 
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The present analysis goes beyond the classical gust-entry 
problem insofar as the classical problem treats a zero-thick- 
ness flat plate, whereas we must not only include thickness 
but, most important, we must examine the very nose point where 
the classical theory becomes singular.  Thus we must somehow 
supplement or alter the classical gust entry problem to permit 
detailed examination of nose-region pressure fluctuations for 
an actual finite-thickness profile. 

The thick-wir^ corrections to thin-airfoil theory that 
are available in the literature (to the present author's 
knowledge) are limited to symmetric flow over symmetric pro- 
files or to steady asymmetric flow (cambered profiles or 
profiles at nonzero incidence). 6,7 The present requirement is 
ror nonsteady, nonsymmetric flow, and a treatment will be 
developed herein specifically for this purpose. The results 
are then compared with the steady, asymmetric, thick-wino 
results of Reference 7. 

An approximate measure of the NSP fluctuation pressure 
due to the axial component of velocity fluctuation will be 

0        provided as a basis for comparison of the relative importance 
of the transverse-compcaent effect,  Na will be interested in 
wavelengths X  of encountered fluctuations of the order of the 
n        chord length Tc) of the penetrating airfoil.  The thickness- 
to-chord ratio, of the airfoil is small of the order of (E) 
(this will be dafined more carefully later), and it will be 
assumed that X is considerably larger than ec, i.e., that e 
Ois small and that the fluctuation scales encountered are large 

compared to airfoil thickness. This is a condition of definite 

f! 

D 

(^ 

i     4.u  Vlew of the fact that we are interested only in details 
in the wing nose region, we shall be content with performing 

_        the detailed analysis for a classical symmeti ic Joukowski 
**?    ^lu  Then',at the end of Section VII, it is shown how to 
extend the results to more general symmetric profiles by relat- 
ing the present results to those of Lighthill's theory for 
rendering approximate solutions uniformly valid. 

Intuitively, since thin-airfoil gust-en*-ry theory leads to 
a pressure singularity at the wing leading edge and fails 
altogether to provide for a staanation point, we expect that 
the effect of transverse velocity fluctuations on stagnation- 
point oscillation and consequent pressure fluctuation at NSP 
will become more severe as the airfoil thicknüss-to-chord 
ratio (order e) decreases. This will turn out to be true. 
We also expect, intuitively that the effect will depend upon 
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the ratio of chord to encountered wavelength (c/X ), and this 
will be true as well. What our intuition cannot predict is 
the strength or power to which these effects enter nor the 
appropriate coefficients, and these will emerge directly. 

Summarizing the assumptions to be invoked, we list them 
here concisely for convenience : 

1 

0 
0 
i 

Zero mean velocity in "turbulent" flow encountered. 

Spatially sinusoidal transverse velocity fluctuations 
Ö encountered (these can, of course, 

be synthesized into a full spectrum 
^■v ^    -ill    ■ m^ mm m   <  i_ 1         «_•__■     ■ .« 

Two-dimensional approximation 

Symmetric Joukowski profile at zero incidence.  It is 
then shown, at the end of Section VII 
how to generalize to more arbitrary 
symmetric profiles. 

of all wavelengths, subject to the 
following restriction). 

Encountered wavelengths Xo large compared to airfoil 
thickness but not necessarily large 
compared to chord length. 

- - 
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II.   ACCOUNTING FOR THICKNESS BY MAPPING 

We take account of airfoil thic)ness by performing a 
sequence of two conforraal mappings from the physical (z) 
plane.  These are illustrated schematically in Figure 1. 
First we map from z, where we have our physical Joukowski 
symmetric profile, to the intermediate c-plane wherein the 
airfoil maps to the (outer) eccentric circle. The mapping 
is given by 

1 /..   ^2x 
Z = 2 

(C + ^ (2-1) 

and the aforementioned circle in the ^-plane can be given, in 
terms of the angle parameter 9, as 

Cc " - *« ♦ Ml+Oe 
10 

(2-2) 

Note that angle 6 is defined with respect to the displaced 
center (-U,o) and not the origin in the 5 plane.  As 
indicated on the figure, the trailing edge of the physical air- 
foil in the z-plane is located at 

z = K,o) 

and the leading edge is approximately located at 

z = (-Ml+2c2),o) 

= (-*.o) 

(2-3) 

(2-4) 

for small c. 

The points on the physical profile corresponding to 

MtatoMMM 
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!,c--ie*Hl+e)e 
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-B=-Ml+e) 

z-plane 

^ plane 

4 (c+u+ üüiiü 2 l c+u 

B=£(l+e) 

/ 

Z-plane 

Figure  1 

MAPPINGS 
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6 =  ±  7r/2  are given by 

zr- *-U +  Uc (2-5) 

indicating a local, thickness of 2le. However, the maximum 
z-plane thickness occurs (Ref. 1) for cosP = - 1/2 and is 
larger by a factor of 3/J/4. Thus the thickness-to-length 
ratio is given closely by 

2U  x 3/3 

21 
= ^c =1.3c 

4 
(2-6) 

Thus e has the physical significance 

^ 1 
1.3 

0.77 

thickness 
chord 

thickness 
chord 

(2-7) 

The second mapping, from ^ to Z, is given by 

• - i te+« ♦ 4^ > C+tc 
(2-8) 

and maps the contour ^ to a slit of zero thickness in the 
Z plane with leading edge at (-B,0) and trailing edge at 
(+B,0). 

Here 

B ■ Ul+c) (2-9) 

    i II^I 
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is the r.emichord of the Z-plane slit. 

The motivation for this double-mapping is as follows: 
We can do the gust entry problem for the slit (in the Z plane) 
by classical techniques.  Then by going back through the 
mapping from Z to c we just cancel out the expected Z-plane 
leading-edge singularity.  Then by mapping from 5 to the 
physical z-plane, we leave the singularity of the (c to z) 
transformation inside the physical airfoil and retrieve the 
flow in the physical plane.  This sequence permits us to 
utilize classical sinusoidal gust-entry theory for flat 
plates, and despite the leading-edge pressure singularity 
occurring therein, transform the result to a finite-thickness 
profile and compute the leading edge pressure fluctuation on 
this profile. 

The requirement that the fluctuation scale be large with 
respect to the airfoil thickness is necessitated by our 
classical gust-entry treatment of the Z-plane flat-plate 
airfoil.  Only under this scale-size assumption is it legal to 
assume that the encountered transverse velocity is the same 
on upper and lower surfaces of the physical airfoil at the 
same chordwise point, x. This, in turn, is implicit in the 
classical treatment of the Z-plane slit where the transverse 
gust to be counteracted by a potential flow is identical on 
upper and lower surfaces of the slit at the same value of X. 

: 

: 

: 

: 

'■ - ■ - —   ■ -  —^^--.^- mlimiam. 
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III.  FLOWS IN THE VARIOUS PLANES 

Defining the complex potential function by F(z)=FU)=F(Z) 
at corresponding points, where 

F - <p+i0 (3-1) 

and where 4» is the velocity potential and i/) is the stream func- 
tion, we have for the basic (zero-disturbance) flow in the 
C-plane, 

D 
r 

r0(C)-^(C+"+iW, 

In the Z plane, this is simply 

(3-2) 

C 
llD 

!. 

ß 

I. 

: 

L 

F (Z) = U Z o      o 
(3-3) 

which is the purely uniform flow in the positive X direction, 
as it should be. 

Inverting Eq. (2-1) for £, we find 

C = z 
/ 2 ,2 

+ V z -£ (3-4) 

This gives, for the basic flow in the z plane. 

uo /T
-;      i2ii+€) 

F  (z) = r2 (z+U + yz2-^2 +  p~ 
Z+l€ 'JX* 

8 

(3-5) 

MMItfrtHi^liMMMH^^MlHUii ■ ■   '   -      ^■——^*u^- ■lii-   il inilimiliaMii'lliiiiiili i 
^_     .      ^MmmlMjmmä^ -. .. - ...^^ - . 
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In the far field (jz]large) this approaches 

Fo(z) ~ U0z (uniform flow) (3-6) 

as it should.  F0(z) is the complex potential for uniform flow 
of velocity U0 in the positive x direction over the Joukowski 
profile of Figure 1, i.e., in the physical plane. 

On the profile i;=Cc in the C-plane, 

Fo(C)-:rU(i+Oe
ie+ l titij 

^(1+^)6 

2 

ie" 

= U0 -t(l+c) cos0 = pure real 
j     (3-7: 

so that \\)=o,  and the profile is the zero-streamline in all 
three planes. 

The complex velocity 

w = u - iv is given, in each plane by 

# \ _ dF(z) w(z) = —rj- 
dz 

•»' ■ Ä 
(3-8) 

" 

- 

We can  therefore  find the  z   (physical)-plane flow from 
the Z-plane  flow using the relation 

. -'    - ^—■■***■***'■•*.■ -     --■  '-■ -1 - ■■--'■•SA^-- ■' - — _^^^^^ 
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W(2) ■ W(Z) 
dz 

1 

1 - 

= w(Z) ^    2    \— 
1 - A- 

C2 J 
(3-9) 

At the leading edge (corresponding to C=-Ji(l+2E) the 
denominator dz/d? is regular, nonzero, but the numerator 
dZ/dC vanishes.  However, it will turn out that our required 
nonsteady flow in the Z plane will approach infinity at the 
leading edge (Z-(-B,0)) in just such a way as to balance the 
vanishing of dZ/dc, and thereby contribute the bounded, 
nonzero velocity at the NSP in the physical plane. 

Now in the inflow in the Z-plane we superimpose on the 
uniform U^-flow a frozen sinusoidal transverse gust whose 
form, on ?he X 

with 

axis» is 

v = vo cos(w0t - k0x) 

v < e u o    o 

k -    -    =    0 
" o X      ' u 

o   o 

10 

(3-10) 

(3-11) 

. ^liMilifcMiÜliM I 'I I — ■■ -    •■ ■ - 
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Since, IZ], -^-,   |z| all ■► • together and,for large negative X, 

x ~ X (3-12) 

(see Eqs. (2-1) and (2-8), 

and since the mappings are conformal (angle-preserving), there- 
fore this sinusoidal transverse gust must correspond or map to 
the same transverse inflow in the field far upstream of the 
wing in the physical z-plane. We must then find that potential 
flow which exactly counteracts  the gust ( Eq. (3-10)) on the 
slit airfoil in the Z-plane. This flow when mapped to the 
z-plane, will then leave the physical airfoil a streamline and 
hence provide the proper flow in the physical plane, when the 
(far upstream) inflow in the physical plane is as required; 
namely the uniform flow U0 plus the frozen transverse sinusoidal 
gust. The solution for the counteracting potential flow in the 
2 plane is the classical thin-airfoil sinusoidal gust entry 
problem, except that we need the vorticity or pressure-jump 
distribution in detail, whereas the usual derivations are content 
with integrals for lift and moment. 

11 
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IV.   PRESSURE AT NSP IN THE PHYSICAL PLANE 

After we have found the required counteracting potential 
flow we must then utilize it to construct the pressure at the 
nose (NSP) of the physical airfoil. For this we use the 
nonsteady Bernoulli equation 

fe ^ 'oM. p ♦ 0oqV2 + p0  , (4-1) 

Now, as noted (Eq. (3-10)) in the preceding section, 

v « U 
o    o 

or   v < €U o    o 

so that the left side of (4-1) is essentially equal to 

p +p U 2/2 + |f r" 'o o     at 
+ 0(uo

2c2po) (4-2) 

On the richt-hand side of Eq. (4-1) we need the velocity 
q ■ |u+ivj which consists of superimposed contributions from 
the undisturbed-flow, the sinusoidal inflow, and the gust- 
counteracting potential flow.  At the NSP, the first of these 
vanishes, since NSP is a stagnation point of the undisturbed 
flow (Eq, (3-5)).  The second contribution (the inflow sinu- 
soidal gust) vanishes also since it is finite (small, actually) 
in the Z-plane (Eq. 3-10) and is annihilated by dZ/dC at the 
leading edge or NSP, in accordance with Eq. (3-9) and the 
remarks following that equation. 

Without closer investigation, it would appear that the 
third contribution to q at the NSP would vanish for the same 
reason. However, as indicated earlier, this component (the 
counteracting flow) proves to be singular of just the correct 
strength (as X ■—B) as to offset the vanishing of dZ/dc and 
contribute to q at the physical NSP.  We shall devote most of 
the remainder of the report to this computation. 

12 
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The terms 3♦/at in Eq. (4-1) should be examined (as 
they may) in the Z plane.  The contributions to 3♦/it on 
the right-hand side of Kq. (4-1) come from the inflow gust and 
the counteracting nonsteady flow.  But the first of these is 
exactly balanced by the 3♦/St on the left-hand side.  We are 
assuming here that the sinusoidal gust inflow can be described 
by a potential flow.  This is not true of physical turbulance 
but it is sufficient for the present single-sinusoidal argu- 
ment, and we can easily construct potential flows having the 
prescribed transverse form (3-10) on the X axis. 

Thuo all that survives of the 3^/3t terms on both sides 
of Eq. (4-1) is the contribution to the right hand side due 
to the gust-counteracting flow.  It will turn out that this 
vanishes on the upstream X-axis right up to the leading edge 
and hence vanishes at the NSP in the physical plane.  This will 
emerge from the gust-entry calculation but is actually a 
direct consequence of the fact that the Z-plane gust-entry 
tSSfM011 is odd.in Y. vanishinq uostream of th« slU and 
exhibiting an antisymmetric jump on and downstream of the slit. 
Since the jump in ♦ is regular (nonsingular at the leading 
edge) therefore ♦ and, with it d^/dt,vanishes at the NSP. 

The consequence of the foregoing statements with respect 
to the pressure fluctuation at the NSP is as follows: 

p-p.-r ("o- ^ 
(4-3) 

wherein q, is the velocity magnitude due to the gust-entry- 
counteracting potential flow in the Z plane, mapped to the 
NSP of the z plane.  That is 

^1 C<Z.      [u(Z)-iv(Z)] -J1- 
. oz 

Z-(-B.O±) dC 

(4-4) 

13 
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V.        .  LIMITING   BEHAVIOR  OF   TELOCITY 
TRANSFORKATION   AT   NSP 

We examine  in detail,   in this section,   the  limiting 
behavior cf the velocity  transformation equation   (3-9)   as 
the NSP is approached in the physical plane or, what is 
equivalent. 

Z -   (-B  .0) 

(5-1) 

s - (-M1+2C) ,0) 

Inverting Eq. (2-8) we find 

C - - tc + 2 + / Z2-B2 

(5-2) 

where  B m I (l+O 

We consider points Z on the top and bottom, respectively, of 
the slit and accomplish the approach to the leading edge as 
follows:  We let 

z- - B + r (5-3) 

top 
bottom 

with r small with respect to el and positive, real. 

r « €  I 

Then, from (5-2) , corresponding points c~ are given by 

(5-4) 

C1 - - t€ - B •f r + i / 2Br-r: 
(5-5) 

14 
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Then  the denominator dz/dc 
finite  as r-»o. 

(1- p—)in Eq.   (3-9)   remains 

dz 
dC 

r-o 

1 - -5 j 
t   (1+20 

- 1- (  +27)7 

I   -   [1-4C-4C2+16C2] 

4c(l-3c) 

(5-6) 

Since our  Z-plane gust-entry  analysis will be good  only 
to order  e,  therefore we keep only  terms  to this order  in 
Eq.   (5-6)   and write 

dz ■  4c 
r-o 

(5-7) 

The numerator dZ/d; in Eq. (3-9) is more involved.  It 
can be written as 

dz^- 
dC 

1 - B 

(C+^O 

1 - B 

(z .^1 2,2 

15 
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(+B-r + i V 2Br-r2)2 

This can  be expanded to give 

, + 
dZ- 

["Fi^TTfTrr 

1 - 

[l-^t^d-fel 

1 - 

M^-f-'i 3/2 

l-   Ixiai/f^-r)*» 

(5-8) 

<i' 
3/2 

; 2i /S + l£ 
v   B B (5-9) 
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Keeping only terms of order 7 | , and utilizing 

results (5-6) and (5-9) in Eq. (3-9) we find 

v(z) 

Z=(-B+r) top 
bottom 

I 
JT2i/¥] |-B«,oiJ—^ 

in Z plane 

(5-10) 

Now w ■ u-iv, and the counteracting part of v simply cancels 
out the sinusoidal gust of Eq. (3-10), which is finite every- 
where.  Thus the v contribution to (5-10) is annihilated as 
r-*o, i.e. as we approach the nose or NSP in the physical plane 

However, the u-part of w on the slit is singular.  In 
fact, foreseeing the form in which the result will emerge, we 
write 

u(x.cA«±±/f^foc.t) (5-11) 

where, in fact, f is regular for all X and depends harmonically 
on time t.  We simply keep t as a parameter for the present. 
We will find the function f in the next section.  However, we 
see that as 
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X -   (-B+r) 

uCx,^)   - t\Jfi f(-B,t) (5-12) 

Then,   from Eq.   (5-10^ 

w(2)   - + 
a/* 
^(^y^) f(-B,t) 

or 

u -  iv - - ~ f(-B,t) (5-13) 

Since, physically^f must be real, we have 

u -• o 

v - 
2C 

(5-14) 

as the NSP is approached (as r->o) . 

This is physically reasonable, since the vertical tangent at the 
nose (in the physical plane) prohibits any axial velocity q and 
permits only the vertical component v.  We see, from Eq. (5-14) 
how the velocity induced at the NSP varies inversely with E 
which, we recall, is 0.77 of the thickness-to-chord ratio. 

The following section is devoted to the development, in 
detail, of the function f(X,t) first introduced in Eq. (5-11). 
In this development, the function sought will be the time- 
dependent vorticity density function Y(X,t) which exists over 
the Z-plane slit and its wake (from +b to •) on the X axis. 
Eq. (5-11) is equivalent to foreseeing the form 

18 
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y  (x.t) y B+x f(X,t) 

(5-15) 

where vorticity and circulation are designated positive for a 
clockwise sense of rotation 

o 
and where f is real and everywhere regular. 

It can be 
procedure (Eq. 
velocity in the 
the nose region 
with the correc 
steady flow ove 
from the fact, 
edge radius (a) 

shown that the result of 
(5-10)) for the transforma 
nose region of the slit ( 
of the physical (z) plane 
tion factor of Lighthill's 
r lifting (asymmetric) air 
as pointed out by Van Dyke 
of a Joukowski symmetric 

our double mapping 
tion of the complex 
Z) plane to that in 
, agrees in magnitude 
nonlinear theory for 
foils. This follows 
, (6'  that the leading 
airfoil is given by 

a = 4c  x semichord 

2cz x chord (5-16) 

(7) 
Then, as noted by Thwaites/" the first-order Lighthill correc- 
tion for a two-dimensional profile of nose-radius (a) is 
achieved by multiplication of the linear-theoretical velocity 
by the factor 

I 
8 + 

where s is distance aft of the leading edge 
with 

(5-17) 

In our notation. 

I 
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X   « -  B + r 

it can be  shown that 

(5-18) 

r » s + 0(€ ^) + 0(f3) (5-19) 

Thus, as s-^o the Lighthill correction factor approaches 

J- 
(5-20) 

Our  transformation  factor  in Eq.   (5-10)   is 

2i/5 
; yB     ~i ifi r 

MIL 

vc2 . chord 

-1^ = 1   iVs 

1   A 
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and this agrees, in magnitude, with Lighthill's result, 
DEq. (5-20).  In Section VII herein, we use this agreement to 

generalize our results to shapes other than the Joukowski 
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In 

profile. 
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VI.  . THE GUST ENTRY PROBLEM IN THE Z-PLANE 
(DETAILS "ÖF f ^t)) 

Most of the analysis needed for the gust-entry problem for 
a flat plate is available in sources such as Reference 2. 
However, we depart slightly in some areas from the classical 
derivation to keep certain details clear and to focus attention 
on the results required for the present application. 

The gust-counteracting flow in the Z plane is completely 
describable in terms of a time-dependent bound vorticity 
Ya(X,t) and a trailing or shed vorticity Yw(X,t), arising as a 
consequence of the ^.ime fspenucnce of the total bound circulation 

B 
r(t) = r  y (x,t) dx 

—ö a (6-1) 

ici)0t Temporarily we admit complex time dependence e"1"0" (which 
leads to complex yat  yw)   with the understanding that we will 
return to real quantities before involving the mapping from Z 
back to z.  The inflow gust to be counteracted is given by 
(Eq. (3-10)) 

v = v. 
i((0 t-k X) 

o  o 
(6-2) 

Then our counteracting flow must be giyen by vorticity distribu- 
tions Y , Y such that (dropping the ela)t time dependence which 
is common to v, yu,  yv,  and r) 

_ i 
CO X 
o 
u 

■v e 
o 

,  B y (x'Mx* 
JL- f  -A  
27r J

-B  x'-x 21T 

00 y  (x'Jdx' 

B X'-X 

(6-3) 
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The assumption (3-10) that v0<eU0 is what permits us to 
approximate the slightly wavy vortex wake geometry with the 
X-axis proper.  It is one of the reasons why our gust-entry 
analysis is valid only to order e, as was noted in Section V. 

Scaling lengths with respect to B and using (temporarily) 

B   * 

B - X 

(6-4) 

and using the classical reduced frequency (corresponding to 
the slit in the Z-plane) 

k = 
co B 
o 

U (6-5) 

we rewrite Eq. (6-3) in the scaled form 

.. 

i: 
: 

r 

;: 

0       2ir J-l 4-x    2ir h      4-x 

(6-6) 

where y denotes y  in scaled variables ,x,C . 

Now the requirement of zero pressure jump across the 
wake demands that, in physical variables. 

yw = V^V1 

This, in turn, requires that 

(6-7) 
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y = e   *    o  ». 
w VW(B) 

or, in terms of scaled variables. 

~    ik -ikx   ,„. 
^w - e   e     yw

iB) 

Then, vorticity conservation demands that 

dt  yw(B, dt 

or 

or 

- iw r = U y (B) 
o    o 'w 

" » " yJB) 
B     W 

Thus 

ywM = ikr ik -ikx 
B  e   e 

Reference (2) defines a convenient parameter ß: 

n = r ik 
Be 

so that 

y (x) = - ik n r w 
-ikx 

(6-8) 

(6-9) 

(6-10) 

(6-11) 

(6-12) 

(6-13) 

The value of Q will be determined subsequently.  Then Eq. (6-6) 
can be written 
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S J T^T d^ - vc 
-ikx 

2tr 

(6-14) 

The inversion of this classical singular integral 
equation for ya{0   is nonunique unless we invoke some 
additional requirement.^4> The Kutta condition is the appropriate 
one and, in the present context, takes the form of a boundedness 
requirement on YaU) at the trailing edge U=l).  With this con- 
dition, the inversion is rendered unique and takes the form^' 

y   (x)  = ■ 
2_ 
IT 

1-X 

1+x 
f1   /JTi _i_J . v     e o 

-1*1 

ikQ 
27r 

/    e Ida. 
dC 

(6-15) 
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Because n varies over (I,00 )while 5 varies over (-1,1), it is 
legal to invert the order of the ^ and n integrations (if they 
were in the same range this \yould not be legal but would re- 
quire the use of the Poincare-Bertrand relation of singular 
integral equation theory).^4'  Performing the inversion of 
order, we 'ind 

■ -lA AL  . ^ 
5. U-x)(T7-0 TJ-X   j  y i-c ^-x d€ 

(6-!G 

We introduce the substitutions 

^ = cosO 

x = COS(p 

rj ■ cosh s 

Then Eq. (6-16) takes the form 

(6-17) 

^X  Jo 
(l+cosQ) 

cosG-cos $ cosö-cosh s 

(6-18) 

dO 

The first term gives (1) 

n 
rrx 

while the second may be written as 

(6-19) 
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:: 

1  pff H- cosO - cosh s ^ cosh s 

" »?-x J 0 cos 6 - cosh s 

- —j- < ir + (1+cosh s) J 
dG 

0 cose-cosh s 

t?-x { 
it -   (1+cosh s) 

sinh s 

as may be easily shown from integration by residues. 

Thus, we find 

I = — 1 - 1 n-x 
+ _l±tL 

^2-1 

_2L- / 5 
t7-x / Tj-1 

Inserting this into Eq. (6-15) we find 

y (x) » 1 71-x 
ffV 1+x L 

-v    e o 
-1JC| 

tr» dC 

ikn i .-Hen _1_    /rzll 
TJ-X  V   TJ-l ' 
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Now, by definition 

« ^     i^   /B 
)dx'   ■ e ik 

/_! :;;w(^) d« 

(6-23) 

Thus we find 0 by operating on both sides of Eq. (6-22) with 

•" L (   ) dx (6-24) 

This gives, upon inverting integration orders, as we may. 

Q 2  ik i m J-i 

-v e o 
-ik^ 

x 

L 'l-x    dx  , 
1+x 4-x ^ 

I 
I 

2  ik ikfl J-ikn  /rj±l       f        /l-x    dx 
1    

e        y n-1       -/_!    / l+x    Tj-x 
dTJ 

(6-25) 

The first inner integral gives 

P  /Iz*    d2l_ = ff J-1y1+x  ^-x 
(6-26) 

( 

while the second inner integral gives 
28 
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n 
l-x dx 
1+X   TJ-X ■L 

(l-co3Q)d9 
cosh s-cosö / 

l-cosQ-»-co3h s-cosh s 
cosh s-cosO 

dG 

/ 

1 

-1 

l-x dx 
1+X TJ-X 

n  + (1-cosh s) 
sinh s 

ff - ir 
J  Tj+1 

(6-27) 

Thus 

n = - 2 e 

- 2 e 

ik e-ik«) H 

(6-28) 

The second integral is, according to Ref. (2) r 

-um ( /mi _ 
it-i 

-ik 
•1    drj ■ - f   lH^,K,   +  i„^<4^ 

(6-29) 
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giving the result 

n[l- «  [H{2'(X) + i ■»»»)]  Ike^-l) - -2** f*, yS  (-v^M,^ 

or 

n - Ä <-v^) 51 
{2)()c) + iH^,(X), 

(6-30) 

Most of the relations developed in this section thus far 
cm be found directly in or inferred from the flat-plate gust 
entry theory presented in Reference (2).  They are presented 
here primarily to make the present report self-contained. 

Comparing the form of Eq. (5-15) for Y(X,t) with the 
results of this section (Eq. (6-22) together with Eq. (6-30) 
for fi) we see that the regular function f(X,t) is given on the 
wing (-B,B) by 

f(X,t),    2 
icüt IT 

v e o 
-ikx' 

B 
X'-X 

dX 

•• ikX'        /  
.  JM      f    e"    B     _   /ma 

2        J       X'-X 7 X'-B 
B 

dX* 

(6-31) 

with  fi given by   (6-30). 
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But all we need for the present application (Eq. (5-14)) 
is f(-B,t).  For this we can use (6-31) with X set equal to 
-B. 

Thus 

f^-B.t)   . 
iox e 

2 
n LA 1±| v e o 

-lk| 

C+i «I 

i; 
i: 

i; 

i 
r 

in 
1 

2 iM 
TT       2 f^yfT.. 

;/; 

v e o 
-4k| 

Vl-^2 
«I 

ika     -T   ö-
ik^ 

31 

(6-32) 

^^■■MII 



0 
0 
[ 

i: 

i". 

i: 

i: 

i 

: 

i 

E 

The first integral in (6-32) gives 

211 

(3) 

,  1 ve"1^ 
^ f    -2  d5 = ^  r   v -ikcosG  .ö e        dO 

2 v« J«<k) o o 

The second integral in (6-32) gives 

(6-33) 

(3) 

IkQ f .- e-i*C 

y^-1 
i«   --rr «i U^oo 

f H<2)Oc) 

(6-34) 

Thus 

f(-B.t) 
icd. 

e 

kO  f2) 
2v J (k) - ^ H-'(k) o o*    ?  o 

(6-35) 

The 
may be pe 

integral required in the expression for n (Eq. (6-30)) 
rformed, with the result,^' 
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- Y •2V I Jo(k) + i Ji 

- irvo    Jo(k)  - i j^k) 

v_    2tr ., 
(l+cosO)   e"lkc08G de 

Thus 

.   4 l^o» lVk'-> J
1
(k>l 

n  =  ik|H{2'(k)+iH<2,(M)' 

0 
Finally, we find for f(-B#t), from (6-35) 

(2) 
<,* kHU;(k) 

f (-B,t) = e < 2 v J (k) - —*-  • J* v 
o o        2      k  o 

J (k)-ij.(k) 
o     i 

H^2)(k)+iH^2)(k) 
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e1-"* vn   ) 2 J   (k) o   |        o 

2(H1
(2) + iH(2)-H1

(2))(j  -iJ,) 
i O 1 O 1 

(H'2,+iH
(2)) 1 o 

iwt e •  2 v 
H.^^kXJ   (k)-iJ1(k)  ! 

Jl(k)   +       (?)        (2) H^;(k)+i H^;(k) 

(6-38) 

Now the quantity 

Hf W 
H,(2,(k)+ i H(2,(k) 
1 o 

is the famous complex 

Theodorsen C(k) function of oscillatory thin-wing theory. 
HOW 

(2) 

k = 
w B  w c  U k c 
o ~ o    o o 

or 
U    2U    2U 
o     o     o 

k = r c 2ff 
2 X X o   o 

(6-39) 

since • = f 
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Thus, for inflow gust forms having wavelength X0 of the order"of 
chord c, we are in the region where k is of the order of TT, which 
is large in oscillatory aerodynamic theory.  For such large k. 

C(k) = 0.5 + i x 0=0.5 

and f(-B/t) simplifies to 

f (-B,t)    vo e^jiJ^k) + t 

(6-40) 

^o^-^l^l) 

Vo eiWt:|Jo(k) + iJl05 (6-41) 

If we make the further asymptotic approximation for the 
JoW/ Ji(M as well, (this is not as well justified with k of 
the order of n, but if anything it slightly underestimates the 
contribution considered) then 

f(-B,t) = v e 
o 

iwt M cos (k- T) 

v e 
o 

i(wt+k- J) 

A + i sin(k- ^) 

V irk (5-42) 

Returning to real form and unsealed variables. 

f(-B,t)   = - C = v      /— ir¥"cos(wt + koB-!> 
(6-43) 

NSP  in 
Inserting this into oir  relation (5-14) for q, at the 

in the physical plane 
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ql H 2c A k B 
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cos((üt + k B - T) o    4 

(6-44) 

For the case where encountered fluctuating scales are 
markedly larger than the chord length of the penetrating airfoil 
then the simple asymptotic-approximation form (Eq. (6-44)) for 
q^ should be replaced by the more accurate relation arising 
from Eqs. (5-14) and (6-38); namely. 

2v 
Re ioüt 

i J^k) 

H^2)(k) (J0(k)-i J1(k)) 

(2) (2) 
H:  (k)+ i HV ' (k) 

(6-45) 

The approximation 

H (2) 

C(k) = 
H1

(2,
+ i H ^ 

1      o 

= 0.5 + i (o) 

is quite good for k values as small as 1.0. 

The asymptotic approximations toJ0 and Ji, however, should 
be replaced by their actual respective values for situations in 
which encountered fluctuation scales far exceed the penetrating 
airfoil chord length and k is, accordingly, less than'-rr. 

In support of our statement, in Section IV, concerning 
the vanishing of H/St at the NSP, we note that the complex 
potential function for our gust-counteracting flow is given by 

F(Z) = o + i 0 = 2ir     j yfx') LnfZ-X-') dx' (6-46) 

\ 
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For real (physical) Y(X,t) this gives 

00 

Yix',t)  tan -1 Y 
X-X' 

dX 

(6-47) 

and we see that <() and 34)/3t are odd in Y and therefore vanish on the 
X axis upstream of X=-B.  Since the jump in (J) across the airfoil is 
not singular, in contrast to Y(X,t), therefore <t>  and 3(l)/8t vanish 
at the nose (X=-B) and therefore vanish at the NSP in the physical 
plane as well. 

Thus we have finally for the fluctuating pressure at the 
NSP in the physical plane 

i. 

C 

P  P"  2   I o k- 
2   2 

v cos (wt+k_B-7 

2€* TT k  B 
O 

B-I) \ o    4  j 
(6-48) 

i: 
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VII.       COMPARISON  OF  PRESSURE  FLUCTUATIONS 
INDUCED   BY  TRANSVERSE  AND  LONGITUDINAL 
VELOCITY  FLUCTUATIONS 

As an approximate measure of the effect of pressure 
fluctuations induced by axial velocity fluctuations 

u = U + öu cos (cü t-k x) 
o o  o (7-1) 

we simply take the quasi-steady result * 

6p 

•d 

- p U öu (7-2) 

ue to öu 
Assuming 6u of the same order as v. (isotropy in planes normal 
to the wing span) we see that the ratio y of pressure fluctuation 
amplitudes induced by transverse velocity fluctuctions to those 
induced by axial fluctuations is given approximately by 

M ■ 
4 e IT U k B 

o o 
v X o o 
2  2 

8 c ir    B u 
(7-3) 

4   thickness 
Recalling that e = —j= x   , 

3/3   chord 

M " 
v X o  o 
U B o 

chord 

8ir 

27 
16 Ithickness (7-4) 

Since B = j chord, this is equivalent to 

(5) *In fact, Bearman's experimental resultsw/ with a bluff 
body show this to be satisfied within 5% for scales X0 more 
than five times as big as body thickness, and we are restrict- 
ing our treatment to this regime. 
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~ ^o Xo chord 27 
^  U thickness thickness  64 it' 

o 

1_    i   ^o o chord 
23    I   U      thickness thickness 

(7-5) 

This makes clear what is required to give physical sig- 
nificance to the transverse-gust-induced contribution to pressure 

fluctuations; namely large    g , large ,. ?h°rd— 
thickness        thickness 

and slow penetration velocity U0 or strong fluctuation intensity 
(v0). 

If Xo ~ chord 

__ j chord    , n and -rr—i—;  ~ 10 thickness 

~ 100 ^o ._ .. 
Then   M " ~J^ y  • t7"6' 

o 
v , 

Thus for jf1 ~    1%   ,  ß ~ JJ 

v. •. 
while for _H~10% , u ~ —=- 

Un 2.3 0 (7-7) 

We should now be able to remove any restriction implicit 
in our use of a Joukowski profile by replacing the e2, which 
appears in expression (7-3) for y, by the relation (Eq. (5-16)) 
between e2 and nose-radius (a) 

€2 =     a  (7-8) 
2 x chord 

(7) Then, in accord with the Lighthill theory,   we can write our 
ratio w in terms of profile nose radius and thereby add generality 
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to the result. Thus, in terms of nose radius, for any symmetric 
profile of small thickness-to-chord ratio. 

v X 
o o 

4 T^T ff2 B u chord     o 

v X 
o o 

• **  c since B = - 
2 2a ff2 U o 

1 Vo 
X o 

^ 2 U 2ir  o a 

1 vo Xo 
20 U 

o nose ! radius 

(7-9) 

;: 

D 
[ 

This expresses the relative importance of transverse and 
axial fluctuation velocity components, in affecting NSP pressure 
fluctuations, directly in terms of the ratios of 
fluctuation velocity      fluctuation scale 
penetration velocity  and    nose radius   * 

For a profile whose noLie region resembles that of a symmetric 
Joukowski profile, expressions (7-9) and (7-5) should agree.  If 
the nose region of the profile of interest differs markedly from 
the Joukowski nose profile, then relation (7-9) should still be 
valid. 
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VIII.  CONCLUSIONS 

The results of our analysis relating NSP pressure fluctua- 
tions to encountered velocity fluctuations are contained in 
expressions (6-48), (7-5), and (7-9).  We reiterate that the 
present analysis applies only to fluctuation scales which are 
large relative to profile thickness. They may, however, be of 
the same order as profile chord-length. The aforementioned 
results indicate that as the ratios 

fluctuation scale  ^o 
nose radius   " a 

and 
fluctuation velocity _ ^2 
penetration velocity   Ü0 

increase such that their product approaches a number of the 
order of 20, then transverse velocity fluctuations become as 
important as axial fluctuations. For fluctuation scales whose 
length is at least an order of magnitude less than the profile 
chord, Bearman's results(5'  should serve to relate NSP pressure 
fluctuations to encountered axial velocity fluctuations. For 
fluctuation scales of the order of profile chord or longer, 
Bearman's results probably still apply if conditions are such that 
our transverse velocity effectiveness ratio y is still small. 
This would require verification. When y is not small, then 
Bearman's results cannot be used, since they neglect the effects 
of transverse velocity altogether. 

When conditions are such that y is large, then the trans- 
verse velocity fluctuations dominate the fluctuation pressure at 
the NSP, and our expression (6-48) gives the result.  As in 
Section VII herein, we can add generality to Eq, (6-48) (which was 
derived for a Joukowski profile) by replacing e therein with 

c = 
x chord (8-1) 

With this substitution our expression (6-48) should give the 
pressure at the NSP, valid for the large-y regime, for nose 
shapes more general than that characterizing the Joukowski profile. 

For the case where y is large and the encountered fluct- 
uation scales are large with respect to penetrating airfoil chord 
length, then the approximate Eq. (6-44) for ql  should be replaced 
by the more accurate expression (6-45) in forming the fluctuation 
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pressure at the NSP.  Equation (8-1^ replacing e by its 
equivalent in terms of nose-radius, can still be used within 
this improved relation (6-45) to remove any restrictions 
imposed by the assumption of a Joukowski profile. 
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